
Driver

Device driver is a computer program that operates or controls a particular type of device

that is attached to a computer. A driver provides a software interface to hardware devices,

enabling operating systems and other computer programs to access hardware functions without

needing to know precise details about the hardware being used.

A driver communicates with the device

through the computer bus or communications

subsystem to which the hardware connects. When a

calling program invokes a routine in the driver, the

driver issues commands to the device. Once the

device sends data back to the driver, the driver may

invoke routines in the original calling program.

Drivers are hardware dependent and operating-

system-specific. They usually provide the interrupt

handling required for any necessary asynchronous

time-dependent hardware interface.

The main purpose of device drivers is to provide abstraction by acting as a translator

between a hardware device and the applications or operating systems that use it.

Writing a device driver requires an in-depth understanding of how the hardware and the

software works for a given platform function. Because drivers require low-level access to

hardware functions in order to operate, drivers typically operate in a highly privileged

environment and can cause system operational issues if something goes wrong. In contrast, most

user-level software on modern operating systems can be stopped without greatly affecting the

rest of the system. Even drivers executing in user mode can crash a system if the device is

erroneously programmed. These factors make it more difficult and dangerous to diagnose

problems.

The task of writing drivers thus usually falls to software engineers or computer engineers

who work for hardware-development companies. This is because they have better information

than most outsiders about the design of their hardware. Moreover, it was traditionally considered

in the hardware manufacturer's interest to guarantee that their clients can use their hardware in an

optimum way. Typically, the Logical Device Driver (LDD) is written by the operating system

vendor, while the Physical Device Driver (PDD) is implemented by the device vendor. But in

recent years, non-vendors have written numerous proprietary device drivers, mainly for use with

free and open source operating systems. In such cases, it is important that the hardware

manufacturer provides information on how the device communicates. Although this information

can instead be learned by reverse engineering, this is much more difficult with hardware than it

is with software.

Microsoft has attempted to reduce system instability due to poorly written device drivers

by creating a new framework for driver development, called Windows Driver Foundation

(WDF). This includes User-Mode Driver Framework (UMDF) that encourages development of

certain types of drivers—primarily those that implement a message-based protocol for

communicating with their devices—as user-mode drivers. If such drivers malfunction, they do

not cause system instability. The Kernel-Mode Driver Framework (KMDF) model continues to

allow development of kernel-mode device drivers, but attempts to provide standard

implementations of functions that are known to cause problems, including cancellation of I/O

operations, power management, and plug and play device support.

https://drivernew.com

https://drivernew.com/

	Driver

